11 resultados para soft tissue infection

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunoliposomes were prepared using rabbit anti-AMV gp80 IgG for the targeted chemotherapy of avian myeloblastosis virus infection. Adriamycin was encapsulated into immunoliposomes and used for in vivo studies. Comparative pharmacokinetics of free drug, drug encapsulated in free liposomes and of drug encapsulated in immunoliposomes in the virus-infected cells revealed that (i) the drug encapsulated in liposomes was cleared from the plasma slowly, and (ii) the drug encapsulated in immunoliposomes accumulated in the target tissue, the bone marrow, 5- and 8.5-fold more than the drug encapsulated in free liposomes and free drug, respectively. The drug encapsulated in immunoliposomes inactivated the virus and exhibited more chemotherapeutic efficacy as compared to controls when injected up to 24 h post-infection. However, when injected 48 h post-infection the drug encapsulated in immunoliposomes did not offer any protection against the virus infection. There is no detectable antibody response against immunoliposomes in the infected animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is pointed out that the complement Clq, associated with the immune response system, has a part containing about 80 residues with a collagen-like sequence, with Gly at every third location and having also a number of Hyp and Hyl residues in locations before Gly, and that it takes the triple-helical conformation characteristic of collagen. As with collagen biosynthesis, ascorbic acid is therefore expected to be required for its production. Also, collagen itself, in the extracellular matrix, is connected with the fibroblast surface protein (FSP), whose absence leads to cell proliferation, and whose addition leads to suppression of malignancy in tissue culture. All these show the great importance of vitamin C for resistance to diseases, and even to cancer, as has been widely advocated by Pauling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a compliant end-effector that cuts soft tissues and senses the cutting forces. The end-effector is designed to have an upper threshold on cutting forces to facilitate safe handling of tissue during automated cutting. This is demonstrated with nonlinear finite element analysis and experimental results obtained by cutting inhomogeneous phantom tissue. The cutting forces are estimated using a vision-based technique that uses amplified elastic deformation of the compliant end-effector. We also demonstrate an immersive tele-operated tissue-cutting system together with a haptic device that gives real-time force feedback to the user. DOI: 10.1115/1.4007638]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In India, the low prevalence of HIV-associated dementia (HAD) in the Human immunodeficiency virus type 1 (HIV-1) subtype C infection is quite paradoxical given the high-rate of macrophage infiltration into the brain. Whether the direct viral burden in individual brain compartments could be associated with the variability of the neurologic manifestations is controversial. To understand this paradox, we examined the proviral DNA load in nine different brain regions and three different peripheral tissues derived from ten human subjects at autopsy. Using a highly sensitive TaqMan probe-based real-time PCR, we determined the proviral load in multiple samples processed in parallel from each site. Unlike previously published reports, the present analysis identified uniform proviral distribution among the brain compartments examined without preferential accumulation of the DNA in any one of them. The overall viral DNA burden in the brain tissues was very low, approximately 1 viral integration per 1000 cells or less. In a subset of the tissue samples tested, the HIV DNA mostly existed in a free unintegrated form. The V3-V5 envelope sequences, demonstrated a brain-specific compartmentalization in four of the ten subjects and a phylogenetic overlap between the neural and non-neural compartments in three other subjects. The envelope sequences phylogenetically belonged to subtype C and the majority of them were R5 tropic. To the best of our knowledge, the present study represents the first analysis of the proviral burden in subtype C postmortem human brain tissues. Future studies should determine the presence of the viral antigens, the viral transcripts, and the proviral DNA, in parallel, in different brain compartments to shed more light on the significance of the viral burden on neurologic consequences of HIV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of alpha-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of alpha-toxin, and triggered limited tissue damage. alpha-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure alpha-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of alpha-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of alpha-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against alpha-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of alpha-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic cell culture on a three-dimensional (3D) matrix or as a hepatosphere appears to be a promising in vitro biomimetic system for liver tissue engineering applications. In this study, we have combined the concept of a 3D scaffold and a spheroid culture to develop an in vitro model to engineer liver tissue for drug screening. We have evaluated the potential of poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix for in vitro culture of human liver cell lines. The synthesized cryogel matrix has a flow rate of 7 mL/min and water uptake capacity of 94% that enables easy nutrient transportation in the in vitro cell culture. Youngs modulus of 2.4 kPa and viscoelastic property determine the soft and elastic nature of synthesized cryogel. Biocompatibility of PAG cryogel was evaluated through MTT assay of HepG2 and Huh-7 cells on matrices. The proliferation and functionality of the liver cells were enhanced by culturing hepatic cells as spheroids (hepatospheres) on the PAG cryogel using temperature-reversible soluble-insoluble polymer, poly(N-isopropylacrylamide) (PNIPAAm). Pore size of the cryogel above 100 mu m modulated spheroid size that can prevent hypoxia condition within the spheroid culture. Both the hepatic cells have shown a significant difference (P < 0.05) in terms of cell number and functionality when cultured with PNIPAAm. After 10 days of culture using 0.05% PNIPAAm, the cell number increased by 11- and 7-fold in case of HepG2 and Huh-7 cells, respectively. Similarly, after 10 days of hepatic spheroids culture on PAG cryogel, the albumin production, urea secretion, and CYP450 activity were significantly higher in case of culture with PNIPAAm. The developed tissue mass on the PAG cryogel in the presence of PNIPAAm possess polarity, which was confirmed using F-actin staining and by presence of intercellular bile canalicular lumen. The developed cryogel matrix supports liver cells proliferation and functionality and therefore can be used for in vitro and in vivo drug testing.